

ESBS Series 30W & 40W/ 1" x 1" DC/DC

Applications

Railway

Industry

Automation

Semiconduc

Network / Telecom

Military

Boat

Aviation

Medical

Automobile

Charger

Features

1" x 1"

4:1 Wide input range +70°C without derating PI FILTER Built-in

2000 VDC Insulation

MLCC No life-span constrained

ON / OFF **REMOTE**

88 % High efficiency

MTBF ≥1.5M hours @50°C GB

series -

Second

METAL **CASE**

UVLO

OCP

OVP

OTP

Watt

Model Number Structure

FSBS 024W 050

40

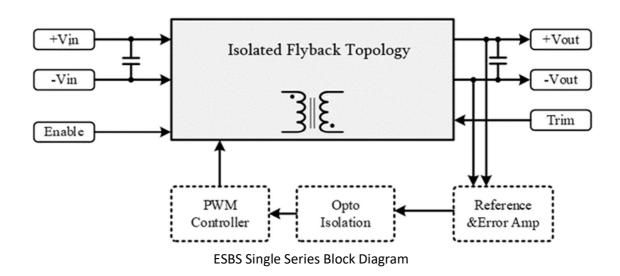
Input Voltage **Output Voltage** Output **Remote Control** Series Name Shape (VDC) (VDC) Quantity Option **050**: 5 **E**volving **120**: 12 S: Single **024W**: 9-36 Sirius-**P**: Positive logic **150**: 15 **B**ishop **048W**: 18-75 N: Negative logic

> **120**: ±12 **150**: ±15

D: Dual

30 F: Flat 40

Model Selection Guide


Typical @ Ta=+25 $^{\circ}\!\mathbb{C}$ under nominal line voltage conditions unless noted


		Input			Output		Г£С: -:
Model	Voltag	e (V)	Current (A)	Voltage	Current	Power	Efficiency
	Range	Nominal	Full load	(V)	(A)	(W)	Typ.(%)
ESBS024W050-SF30	9-36	24	1.42	5	6	30	88%
ESBS024W120-SF30	9-36	24	1.42	12	2.5	30	88%
ESBS024W150-SF30	9-36	24	1.42	15	2	30	88%
ESBS024W120-DF30	9-36	24	1.42	±12	±1.25	30	88%
ESBS024W150-DF30	9-36	24	1.42	±15	±1	30	88%
ESBS048W050-SF30	18-75	48	0.71	5	6	30	88%
ESBS048W120-SF30	18-75	48	0.71	12	2.5	30	88%
ESBS048W150-SF30	18-75	48	0.71	15	2	30	88%
ESBS048W120-DF30	18-75	48	0.71	±12	±1.25	30	88%
ESBS048W150-DF30	18-75	48	0.71	±15	±1	30	88%
ESBS024W050-SF40	9-36	24	1.89	5	8	40	88%
ESBS024W120-SF40	9-36	24	1.89	12	3.33	40	88%
ESBS024W150-SF40	9-36	24	1.89	15	2.67	40	88%
ESBS024W120-DF40	9-36	24	1.89	±12	±1.67	40	88%
ESBS024W150-DF40	9-36	24	1.89	±15	±1.33	40	88%
ESBS048W050-SF40	18-75	48	0.95	5	8	40	88%
ESBS048W120-SF40	18-75	48	0.95	12	3.33	40	88%
ESBS048W150-SF40	18-75	48	0.95	15	2.67	40	88%
ESBS048W120-DF40	18-75	48	0.95	±12	±1.67	40	88%
ESBS048W150-DF40	18-75	48	0.95	±15	±1.33	40	88%

Description

Evolving Sirius - Bishop series - Second generation converter is composed of Isolated, board-mountable, fixed switching frequency dc-dc converters that use synchronous rectification to achieve extremely high-power conversion efficiency. These DC-DC converter modules use advanced power processing, control, and packaging technologies to enhance the performance, flexibility, reliability, and cost effectiveness of mature power components. Each module is supplied completely encased to provide protection from the harsh environments seen in many industrial and transportation applications.

Electrical Specifications

(Typical @ Ta=+25°C under nominal line voltage conditions unless noted.)

Input Specifications

Parameter	Notes and (Min.	Тур.	Max.	Unit		
Transiant Innut Valtage Danges	ESBS024W mode	ls (100ms max)			50	VDC	
Transient Input Voltage Ranges	ESBS048W mode	ls (100ms max)			80	VDC	
Operating Input Voltage Panges	ESBS024W	9	24	36	VDC		
Operating Input Voltage Ranges	ESBS048W	18	48	75	VDC		
Under-Voltage Lockout	ESBS024W		8.5	9	VDC		
Start up Voltage	ESBS048W		17.5	18			
Under-Voltage Lockout	ESBS024W	6	8		VDC		
Shutdown Voltage	ESBS048W	15	17		VDC		
	ON ON		Open			VDC	
Enable Function Innut	Positive logic	OFF	Short or 0 ~ 1.2		2	VDC	
Enable Function Input	No sotive legis	ON		Short or 0 ~ 1.2		VDC	
	Negative logic	OFF	Open			VDC	
Input Filter	All models		Вι	ıilt-in PI Filt	er		

Output Specifications

Parameter	Notes and Cond	Min.	Тур.	Max.	Unit	
Output Voltage Accuracy	V _{NOM} 50% Load				±1.5	%
Line Regulation	Low Line to High Line				±0.3	%
Load Regulation	10% to 100% Load			±0.5	%	
N dissipance I and	Single output		0			%
Minimum Load	Dual output	10			%	
Output Bingle & Noise Voltage	Bandwidth 20MHz and with 1µF MLCC	5V			2	%V _{pk-pk}
Output Ripple & Noise Voltage	Output Capacitor each output	All others		1	1.5	%V _{pk-pk}
Temperature Drift					±0.04	% /°C
Transient Recovery Time	25% load step change			800		μSec.
Transient Peak Deviation	ΔIo/Δt=2.5A/μs				±3	%Vo
Start-Up Time	When use Enable Funct		20		mSec.	
Trimming Output Voltage	V _{NOM} 10% Load		±10		%	
Over Voltage Protection	V _{NOM} 10% Load		120		%	
Output Power Protection	V _{NOM} (Current limit / Hi	ccup Mode)		120		%

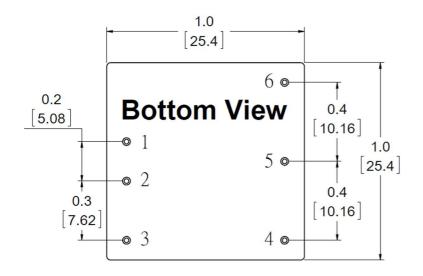
General Specifications & Environmental Specifications

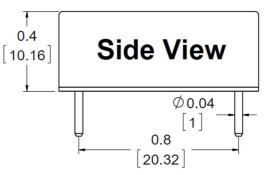
Parameter	Notes and Conditions	Min.	Тур.	Max.	Unit	
Switching Frequency	V _{NOM}	220		330	kHz	
Storage Temperature Range	All models	-60		125	°C	
Operating Case Temperature	All models	-40	100		°C	
Over temperature Protection	All models, Auto. Recovery		105	C		
Thermal impedance	Natural convection (Metal Case –Flat)		11(Vertical)	•	°C/Watt	
Isolation Voltage Input to Output	All models, 1 Minute	2000	3(horizonta		VDC	
Isolation Resistance Input to Output	All models, 500VDC, At 70%RH	100			ΜΩ	
Isolation Capacitance Input to Output	All models		1500		pF	
Humidity (non condensing)	All models			95	%	
Calculated MTBF	BellCore-TR-332@ 50°C G.B		1.5		M HR	
Thermal shock		N	MIL-STD-810F			
Vibration	Environmental Engineering Experimental Tests	N	∕IIL-STD-810)F		
Drop	= Experimental rests	N	MIL-STD-810F			
Weight	Shape-F (Flat)	15 (0.5)			g (oz.)	
Dimensions	Shape-F (Flat)	1.00" x 1.00" x 0.40"(25.4 x25.4 x10		(10.16mm)		
Case Material	Shape-F (Flat)	Aluminum	Aluminum + FR4 (Non-Conductive B			
Potting Material		Silicone				

Standards Compliance

Parameter	Standard	Test Conditions	Performance Criteria		
Environmental Compliance	Reach; RoHS		PASS		
EMI	EN55032		Class A / Class B		
ESD	EN61000-4-2	±4 kV Air Discharge ±4 kV Contact Discharge	Crit. A		
Radiated Immunity	EN61000-4-3	Level 2, 3 V/m	Crit. A		
Fast Transient	EN61000-4-4	±2 kV Applied	Crit. A		
Surge	EN61000-4-5	±2 kV Applied	Crit. A		
Conducted Immunity	EN61000-4-6	Level 2, 3 V rms	Crit. A		

It is recommended to protect the input by fuses or other protection devices.


The standard modules meet EN55032 Class A and Class B standard with external components.


The information and specifications contained in this data sheet are believed to be correct at time of publication. All specifications are subject to change without notice. No rights under any patent accompany the sale of any such products or information contained herein.

Mechanical Dimensions & Pin Assignments

Shape - F

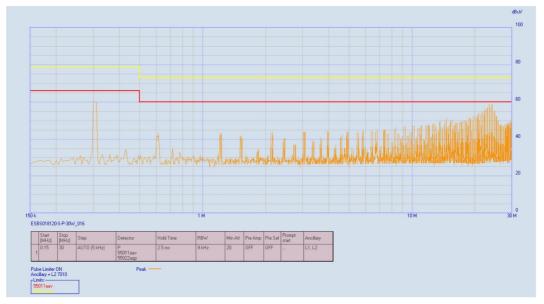
Pin Assignments:

Pin#	Single	Dual
1	+Vin	+Vin
2	-Vin	-Vin
3	Enable	Enable
4	-Vout	-Vout
5	Trim	Com
6	+Vout	+Vout

Note:

Pin Pitch tolerance: ±0.01 [0.25]
Pin Dimensions: .XX±0.03 [.X±0.76mm]

Pin Material: Copper Alloy


Pin Plating: Gold

Dimensions in inches [mm] **Tolerances:** .XX±0.02 [.X±0.5mm]

.XXX±0.001 [.X±0.025mm]

Conducted EMI

Input terminal value (typ.) ESBS024W120-S-P-F30 @Vin = 24VDC, lout = 2.5A

The fundamental switching frequency of the module is 300 kHz.

Characteristic Curves

Testing conditions are at typical input, Ta=+25°C, full load (horizontal mount) Unless otherwise indicated

The figures of ESBS024W120-S-P-F30

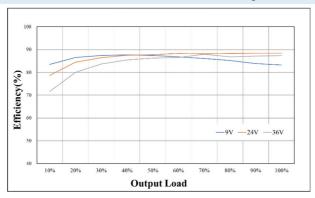


Figure 1 : Efficiency at Minimum, Nominal and Maximum Input voltages VS. Output load.

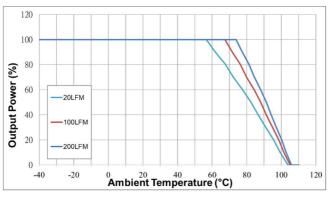


Figure 3 : Ambient Temperature VS. Output Power Derating Curves(Note: 20LFM = Free Air)

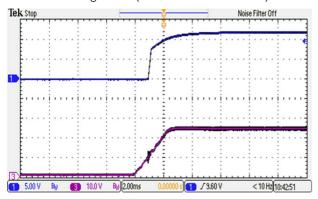


Figure 5 : CH1 = Vout, CH3 = Nominal Input Typical Start-up waveform at Full load.

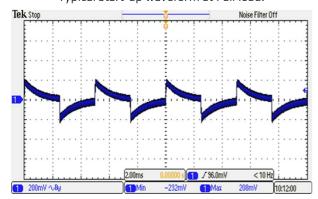


Figure 7 : Transient Response at Output step load (Vin: Typical ,50 $^{\sim}75\%$ of output current; Δ Io/ Δ t =1A/ μ S)

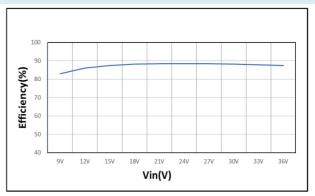


Figure 2 : Efficiency VS. Input Voltages at 100% rated power

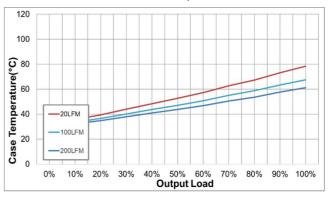


Figure 4 : Case Temperature VS. Output rated Power (Note: 20LFM = Free Air)

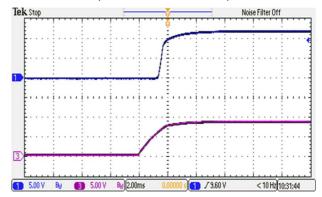


Figure 6: CH1 = Vout, CH3 = Enable Pin
Typical Start-up waveform. Input voltage pre-applied

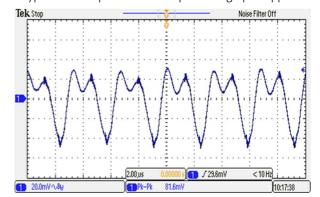


Figure 8 : Output Voltage Ripple & Noise at full load. (Vin: Typical, With Output Capacitor to add $1\mu F$ MLCC)

Trimming Output Voltage – for Single output models

Only the single output converters have a trim function. That allows users to adjust the output voltage from +10% to -10%, please refer to the trim table that follow for details. Adjustments to the output voltage can be used with a simple fixed resistor as shown in Figures 1 and 2. A single fixed resistor can increase or decrease the output voltage depending on its connection.

Note:

- * Trim adjustments higher than the specified range can have an adverse effect on the converter's performance and are not recommended.
- ※ If the trim function is not used, leave the trim pin open.

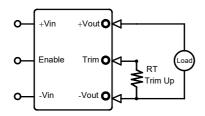


Figure 1. Trim Connections To increase Output Voltages Using Fixed Resistors

	Trim up resistor value(KΩ)									
Vout	1%	2%	3%	4%	5%	6%	7%	8%	9%	10%
5	112.2	51.1	30.7	20.5	14.4	10.4	7.5	5.3	3.6	2.2
12	267.8	121.9	73.3	49.0	.34.4	24.6	17.7	12.5	8.4	5.2
15	332.9	151.5	91	60.7	42.6	30.5	21.8	15.4	10.3	6.3

Enable Control Function

The primary-side, Enable Control function can be specified to operate with either positive or negative polarity. Positive-polarity devices are enabled when the enable pin is left open or is pulled high. See "Enable Function Input.

Positive-polarity devices are disabled when the enable pin is pulled low (under +1.0V with respect to -input). Negative-polarity devices are off when the enable pin is high/open and on when the enable pin is pulled low. See Figure 3.

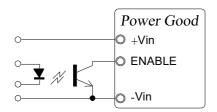


Figure 3. Driving the Enable Control pin

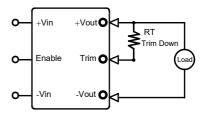


Figure 2. Trim Connections To Decrease Output Voltages Using Fixed Resistors

		Trim down resistor value(KΩ)									
Vout	-1%	-2%	-3%	-4%	-5%	-6%	-7%	-8%	-9%	-10%	
5	139.8	63.5	38.1	25.4	17.8	12.7	9.0	6.3	4.2	2.5	
12	342.5	155.9	93.7	62.6	44.0	31.5	22.7	16.0	10.8	6.7	
15	454.5	205	125.8	84.7	60.1	43.6	31.9	23.1	16.2	10.7	

Output Ripple Noise

The two copper strips simulate real-world PCB impedances between the converter and its load. Scope measurements should be made using BNC connectors or the probe ground should be less than 1/2 inch and soldered directly to the fixture.

All external capacitors should have appropriate voltage ratings and be located as close to the converter as possible.

Temperature variations for all relevant parameters should be taken into consideration. The most effective combination of external I/O capacitors will be a function of line voltage and source impedance, as well as particular load and layout conditions. See Figure 4.

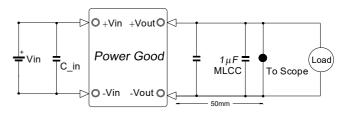


Figure 4. Measuring Output Ripple/Noise(20MHz bandwidth)

PowerGood Tech. Research Co., Ltd.

Address: 5F, No. 40, Keya Rd., Daya Dist., Taichung City 42881, Taiwan

Website: www.powergood.com Email: sales1@powergood.com TEL: +886 4 2568 0448

FAX: +886 4 2568 0438

